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THE NON-STATIONARY INVARIANT SOLUTION OF THE EQUATIONS OF GAS DYNAMICS 
DESCRIBING THE SPREADING OF A GAS INTO A VACUUM* 

S.V. KHABIROV 

An invariant solution of the equations of gas dynamics, constructed on a 
one-dimensional subgroup (according to the classification in /l/) which 
is only allowed in the case ofapolytropic gas with a special adiabatic 
index, is considered. The gas spreads out into a vacuum after a finite 
tine. New solutions are constructed which describe one-dimensional flows 
from a source into a vacuum and the focussing of the gas within a sphere 
or a cylinder with shock waves. The spreading of a concentration of the 
gas with an arbitrary boundary when there is a contact discontinuity is 
also considered. 

One-dimensional flows have been treated in detail in /2, 3/, mainly 
in the case of extended subgroups. 

1. Equations for the invariant solution. The equations of gas dynamics in the 
case of a polytropic gas with an equation of state 

p = il (S) py, A (S) = erp [(S - S,)/'i,nRI 

and a special adiabatic index 1: -= (n--t- 2)/n in a space III 22, . * .I 5, have the form 

where u = (u,, . . ., u,) is the velocity, p is the density, p is the pressure, S is the entropy 
and R is the gas constant. Instead of the last equation, one may take dSl& = 0. 

System (1.1) permits a (l:pn(n + 3) + 5)- parameter group of point transformations C/4/, 
p.146). In doing this, there is a special operator which is only permited in the case of an 
index y = (n + 2)/n. When ?z= 2, all the dissimilar subgroups are tabulated in /l/. Next, 
invariant solutions are considered which are constructed on a family of one-dimensional sub- 
groups of this classification containing a special operator but for any natural n. A subgroup 
is specified by the operator 

where the subgroup parameter 0 .< a < 2. 
An invariant solution, constructed on a subgroup HCL, is written in the following form ic 

is the velocity of sound): 

The functions p, p, C, .? and ii = (C,, . . ..E.) depend on F = (Z,, . . ..Z.). 
Let ii, p. ITi and E be finite at any instant of time. Then, as f+cu, the gas par- 

ameters u, P? P and c approach values correspondingtothe vacuum state and to retardation at 
all points of the space. When t=O, we get 
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r. = re-en, u (0, T) f eeoii (re-eo) 
p (0, r) = exe+ (re+), p (0, r) = e(“+@* p (rt+) 

This means that the values of ii,3 and p are practically the initial parameters of 
the special gas. 

Substitution of (1.2) into (1.1) yields the system of the Ha-invariant solution which 
is similar to the system for the steady state motion of the gas in a centrosymmetric gravi- 
tational field which is proportional to the radius 

(ii-aaf)~~~+$'V~+F~O 
(iX--a?).Vp+pdivTi=O 
(ii-a?),T@-t((n+ Z)/n.)PdivG=O or (~--_~)~7'tS-_;O 

(f-3) 

The line L with the tangential direction ii- a? at each point is called a stream line. 
The entropy integral s = s,(L) is valid along it. 

When a =L 0 or in the case of flows when 6 = .$:-p.vp, 7: = ] f [, the Bernoulli integral 

$" + nP + i* = D”(L), ij = 1 ii 1 (f.4 
is valid. 

In this case the flow takes place in a sphere f<,<, on the boundary of whichavacuum 
and retardation are attained. In the case of a fixed i:, the critical velocity is defined by 
?*a = (P - P) ifn -+ 1). 

The Bernoulli integral is valid in the case when q = ticos @, where @ is the angle 
between the vectors ii and F and, also, in the case of potential flows. 

It has been verified that, if the flow in isentropic, it is also iso-energetic, that is, 
the constant in the Bernoulli integral is independent of the stream line. 

The characteristics of system (1.3) are sought in the form h fr) = 0. If n is a unit 
normal, thenone characteristic coincideswiththe streamline (ii -cG)sn = 0 while the other 
two have the form (ii -aZ).n = fT and, when a = 0, they are only possible when 9.3. 

Let the surface of a strong discontinuity F(r,t) = 0 be Ha-invariant. Then, it has 
the form F(F)= 0. The velocity of the surface in the direction of the normal n is: 

A contact discontinuity is characterized by the equalities Un' D,, Ipl = 0, t&l = 0 
(the square brackets denote a jump in the quantities inside the brackets). These equalities 
are written in the &G-invariants 

nn _ = a&, lfil = 0, Iti,] = 0 (9 

The conditions on the shock wave (SW) are specified by the equalities 

IQ] = 0, Ipvl = 0, [p + pu"J = 0, L(n+ 2)p.'p + u'l = 0, 
v=un -D13, 

where u. is the projection of the vector u on to the tangent plane to the surface of the 
explosion. 

The relationships 

where the indices 1 and 2 denote the states of the gas along the different sides of the shock 
wave, follow from these conditions which have been written in terus of H,-invariants. 

2. The group property of the invariant motion. System (1.3) permitsa llp(n -i)l- 
dimensional group of rotations, Zi and two extension opera‘tors 

The operator Y forms the centre of the whole algebra and it may therefore be added with 
an arbitrary coefficient to any operator of any subalgebra. Taking account of the remark 
which has just been made, 
form /l, 5/ 

we shall write the system of dissimilar subgroups when n> 1 in the 
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<z + BX>, <x>; (Xv z>; l.41. z,, z,>; (Zl, z2, z,, x> 
The invariant solutions can be considered on each of these subgroups. For example, 

calculation of the invariants of the subgroup Z + fix + yY when n = 3 leads to the follow- 
ing form for the invariant solution: 

u,=.@(Ucoscp-Vsinq), f1,=efi~(Usincp+Vcoscp) 

us = @W, p = erqR3 p = e(~+%fl)~P 
(2.1) 

where U, V, W,R and P depend on S = se-lie, Z = x,e-fiq; x1 = s cos (p, z2 = s sin q. Substitutioninto 
(1.3) leads to the system for determining U, V, W,R and P. 

System (1.3) has a symmetric solution of the form 

ii=r;-lp(r)F, i;(i), @(')> C2=((n + 2)in)plij 

with respect to the origin of the coordinate system which is a particular invariant solution 

constructed on a subgroup of rotations and enters into the class of one-dimensional motions 

of a gas with spherical (IL = 3), cylindrical (n = 2) and planar (n = 1) waves. The functions 
g and C satisfy the system 

Q'(,j - a;) + ,a?? +-r=o (2.2) 
rzC'(~-~~)+c(~'+(n-l)q/T)=IJ 

when CL=o, there are two integrals which completely describe the motion 

ij_ ,zF” _f p=02* @nF”- = ,g (2.3) 

When U#O, system (2.2) can be written intheparametric form 

d?/dl = (n - 1) ij? - 1.2 (g - a?) B(2.4) 

dF/dl = n-15 [? - (n - 1) Fj (q - CC)] 

dr/dl = F [(q - cc/q* - C”J 

The substitution q = r (Q (s) J_ x), c = ;; c (s), s = In? leads to the selfcontained system 

of the two equations 

(2.5) 

By dividing the second of these two equations by the first, we get 

dC 1 c l~n(C’--~2)-(n--l)Q(Q+a) .-..---zxz_ 
dQ n -Q+(Q fa)(nCP-QQZ) 

!(2.6) 

The solutions of system (2.2) are studied in detail later and it is explained to which 
problems they correspond in gas dynamics. 

3. One-dimensional motions when e=O. When n- 1, it follows from (2.3) that 
Q = ET-', h = C' 

F (h) = h .+ Esh-1 x D' _ ).2 = G (F) > O (3.1) 

Plots of the functions F (h) and C(r) qualitatively describe the motion of the gas. 

Let the maximum of G(i) be greater than the minimum of F(h), that is, u'>2 IEl. Then, 

the minimum of G(i) defines the domain of the flow O<?,< rl== (D’ -2 IE I)‘*, At the minimum 

point, h= IEl satisfies the equality /q 1 = C = 1 E (“3 while the velocity of sound is 

attained on the boundary of the flow domain i = r,. The function F(h) is defined on the 

set h, < h < A,, where h,., = “JO2 zk (D4 - 4E*)'l~l. The subsonic velocities 1 ?j ) < 1 E 1’1. < C 
correspond to the values of h in the interval lEl<h<h, while the supersonic velocities 

Igl>lE I"z>c correspond to the values of h in the interval h,<h< 1.E 1. Hence, two 

flows correspond to the two branches of the function h (F) : one is subsonic and the other is 

supersonic. Moreover, there is a source (g> 0, E> 0) or a sink (F < 0,E < 0). at the point F = O 

and a further acoustic sink or source at the point i: = rl. 

The solution when E = 0 is referred to as retardation. 

q. = 0, ~~2 z D,Q _ f? (3.2) 

It is defined inthedomain O< ?< D,. A vacuum state is attained when i= D,. 

Theorem 1. The solution of (3.1) with the condition 

D2>41EI>0 (3.3) 
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is coupled with the solution of (3.2) through a shock wave with a specified direction for its 

velocity, if the inequalities 1/FD0>D>D,l~2 are satisfied. Generally, speaking, two 

possible shock transitions exist. 

Proof. The velocity of the shock wave is equal to ff. On a shock transition, con- 

ditions (1.7) take the form 

The place where the shock wave is located, i= r* = D.1’~ 
means that 

D=-Doa 
q=-, 

JfZD 

The equality @ = E is equivalent to the equation 

f (x) = x (2 -x)(1 - x)~ = 6, x = D,*D-*, 6 = 

the roots of which have to be sought in the interval O<X< 2. 

is found from (3.1). This 

4E2D-4 (3.4) 

The function f (x) has a 

minimum equal to zero at the point x=l and two maxima equal to I!& at the points x* = 1 It 
11/b?, The inequality (3.3) follows from this and ensures that the shock wave is located in 

the flow domain r* < rl. 

When q >O;if the velocity of the shock wave is equal to i (or --F),then, according to 

Zempl&'s theorem, retardation occurs in front of (or behind) the shock wave front and the 

point source is coupled with a vacuum. 

When q (0, retardation occurs behind (in front of) the shock wave front and the gas is 

focussed withinthedomain F< rl. 

There are two roots of Eq.(3.4) subject to condition (3.3) in each of the intervals 

1 <XC 2 O<x< 1, which correspond to the two possible shock transitions for a specified 

direction of the velocity of the shock wave. When x<l, a unique solution is chosen with 

the aid of the inequality r*< D,. The root of Eq.(3.4) then lies in the interval x_ < I,'2 < 
x< 1. 

When n=2, it follows from (2.3) that 

Let the minimum of the function F(k) be less than the maximum of G(F), that is, 

I E I -=I (‘i,D)’ (3.6) 
The flow domain 

rlr are the roots of 

1 E 1’1~ ri --‘/’ is attained 

is then defined using the minimum of the function F(1): rl <i:<r,, where 

the equation 33Ez = fz(D2 -f*)3. The velocity of sound [ qi 1 = ci 1 
on the boundaries of this domain. Consequently, f = Ti defines the 

boundaries of the non-point acoustic sources or sinks. The maximum of the function G (r) 
specifies the domain of definition of the function F(1):& <A< h,, where hi> 0 are the 
roots of the equation 3 (‘lpD)‘/~ = 2h + E2hm2. In the domain h,<h< E’la, the flow is subsonic 

while it is supersonic inthedomain EJ*<X<X,. 
The solution when E = 0 is referred to as a retardation. 

q = Ei-‘c-2 a = p,vz 
F (A) = 2&- Ezh-2 = i% (02 _ r.?) = G (f) 

(3.5) 

io = 0, &2 zz ‘I2 (Do2 _ f?) (3.7) 

It is defined in the interval O<i’ <DD, and reaches the vacuum when f=D 0. 
The following theorem is proved in precisely the same manner as when n=l. 

Theorem 2. The solution of (3.5) subject to condition (3.6) is coupled with the solution 

of (3.7) through the shock wave with a specified direction for its velocity, if the inequal- 

ities 30,‘1/5>D,> I/$D are satisfied. At the same time, if ,1/T D<D,<D, then there 

exists a unique shock transition point while, if D<D, < 30/1/s, two shock transitions are 
possible. 

The solutions contructedin Theorem 2 describe the flow of a gas from a non-point source 
into a vacuum or the focussing of the gas on the axis of a cylinder. 

When n = 3, it follows from (2.3) that 

q=E,?lz-S, A=& .(3.8) 
F (h) = 3)\ + E2h-3 = f (D’ -F?) = G (i) > 0 

The function y = F(h) has the asymptotes h= 0, y= 3h and a minimum equal to 
at the point h. = J E I’/a. 

4 1 E I”x 
When O<f< D, the function y = G(i) has a single maximum, equal 

to 2D3KV* at the point Y = D/o. Let the minimum of F (A) be less than the maximum of 
G (F), that is, 

1 e ] = 1 E /'/z.:D3 < (2.3'13-' (3.9) 
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The flow domain is defined using the minimum of the function F(h): rl <?<r,, where I‘; 
are the roots of the equation 4 1 E 1% = i; (Dz _ y’), The velocity of sound 1 ?ji 1 = Ci = 1 E I’/v;*‘~ 
is attained on the boundaries of this domain. This means that P = ri are the boundaries of 
the non-point acoustic sources and sinks. 

Corresponding to the two branches of the function h(r), two values of h correspond 
to each i' from the flow domain. The two branches are defined on the set 
2x 3WQ' and h, <h < j E I’/1 is the domain 

/1 j E )‘1/2 ( F :’ 
of values for the first branch while 

i., 
11: 1". '1, 

is the domain of values for the second branch, where hi >o are the roots of the 
equation E’h-’ + 3h = 2x3-“l~D3. If L > 1 E I’/:, then q” ( I ,lj /‘I? ,-I ( r: and a subsonic flow 
is obtained. If h < ) E )‘/z, then 4" > / E )‘I. 7-1 > 2’ and a supersonic flow results. An 
extremal velocity is attained at the point I: =u:l/. 

The solution when E = 0 is referred to as retardation. 

U" = 0, F"? = 1f3 (U,J - ,.') (3.10) 

It is defined in the interval 0-T T /‘D,, and, when 7 :m D,, reaches the vacuum. 

Theorem 3. The solution of (3.8) subject to the condition --3~",~<e<",3-"1~ is coupled 
with the solution of (3.10) through a shock wave with a specified direction for its velocity, 

if the inequalities 1/) jD(D,< ‘7]‘<T,D are satisfied. Generally speaking, two shock 
transitions are possible. 

Froof. The velocity of the shock wave is equal to *i'. It follows from conditions (1.7) 
on the shock transition that 

Substitution of these equalities into (3.8) yields 

(D,'D)' = 2 (1 _ x), x :-z 2 (r.'D): (3.12) 

The second equality of (2.3) becomes the equation for determining the position%, = ?(r* 0)" 

where the shock wave is located: 

f (X) = (2X - I)[(1 - X)(5X - I)]“/2 = Iin, k = *12”;*$ (3.13) 

By virtue of (3.9), Ik I <k, =2x3+ and, by virtue of (3.11) and (3.12), the function 

f (xl, defined in the interval '.,<x< 1, has a negative minimum and a positive maximum at 

the points 

“* = -& (9+ li/‘q , f (x,) = 0.29, f (x_) = - 0.1 

and three zeros at the points 'I,,'/, and 1. The two functions, f(X), which are tangential to 

the graph at the points x,, = 1:'3<x_, x0' = (3 + 1/ti)/10, pass through the origin of coordinates 

and have the angular coefficients f’(q,)= -8xX3> k,, f’(n,‘)= 0.42>k,. This means that a 

shock transition is only possible for values of k which satisfy the inequalities -8x?+ < 

k < 2 x 3-‘1:. The inequalities involving e, which have been presented in the formulation of 

this theorem, follow from this. For such k, Eq.(3.13) has two roots to which the two possible 

shock transitions correspond. 

The shock wave must be located in the domain of the flow r,<D,. It follows from this 

that x <x < 4', 
the saie ti*me, 

and a single shock transition is possible if 

'I:, < x* < a < 4, 5, 

Ocli <5’lf (4/5)<ko and, at 

where 5/,#/5) -f (a). The shock wave must be located in 

the domain of the flow (2.3): r,<r,<r, or x,<x,<x,, where xi = 2 ('JD)" satisfies the 

equation 

1 k 1 x = (3%16)xz(2 -x)' = g (x) 

This means that the inequality g(x)> If(X) ) must be satisfied, which is confirmed by 

the calculations. 
According to Zemplen's theorem, when x.+<*:'~(x*> lj2), the state (2;3) is found ahead 

of (behind) the shock wave front. If the velocity of the shock wave is equal to r*2 x* > 
’ 2 l--r*, X*<‘/,), then q>O (g(O) and the gas source with the boundary F = r, is coupled 

through the shock wave at F = r* with a vacuum at 7 = ro. If the velocity of the shock 

wave is equal to - r*, x* > V, (r*, x* < 1/z), then q < 0 (q > 6) and the gas is focussed within 

the sphere T = r,. 

4. One-dimensional motions when a#0. Let us investigate the behaviour of the 

integral curves of Eq.(2.6) in the half-plane C>O /6/. 
There are two singular points when n = 1: one at the origin of the coordinate system 

(a saddle point) and the other at an infinitely remote point. The curve which enters the 

saddle point has the asymptotic behaviour Q = l/,?C" + 0(C4) when c - 0. The other end of 

this curve enters into the infinitely remote singular point. Hence, the curve joining the 

singularities separates the remaining integral curves which begin and terminate ataninfinitely 
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remote point. 
System (2.4) is integrated when n = 1. Aftermakinqthe substitutions u = q --ai: + C, and 

w=g-cSaF-~, the variables v and u> are separated: 

The logarithmic spirals 

fiC==Ve.up$, u=Wexp$. 

are obtained in the polar coordinates 

Ai; = w ces cp, v -t 1 ,a? = o sin m, pi- I.'@ = Q sin q 

The solution of system (2.41, adjoining a vacuum when r = r,,, g = arg and F = 0, corre- 
sponds to a curve in the (Q,C) plane which passes into the origin of the coordinate system. 
At the same time v = II' = 0 and it follows from (4.1) that 

When i:=o, this solution has the form 

~=rOeRsh~=q,, F=c,=r,ePCh~ (4.2) 

which corresponds to a point source. 
Hence, a continuous flow from a point source into a vacuum corresponds to a curve joining 

the singularities. The solutions of (2.4) which depend on two parameters correspond to other 
integral curves of integral (2.6). They can be constructed with the help of the different 
branches of the functions u and w from (4.1) and describe flows which originate from point 
sources and are terminated by sinks. 

Theorem 4. When n = 1, there exists a flow from a point source with arbitraryparameters 
into a vacuum which may pass through a shock wave. 

Proof. If the source parameters q. and c0 are identical to (4.2), the flow is continuous. 

In the general case of arbitrary parameters 9, and Cl, solutions L(c,,q,)ofEq,(4.1) are found 
such that @ = ql. C = cl when F = 0. These curves are not terminated by a vacuum state. 

Let us now consider the solutions L(r,,c,,qo) which are adjacent to a vacuum when f = I‘~. 

By virtue of (4.2), they depend on the single parameter rO_ Let us couple L (rO, c,, qo) with 

L (%r 41) when ,7 = P* with the aid of the condition for a shock transition (1.7). The equal- 

ities (1.7) become a system of two equations for determining the two unknowns r0 and r*. 

When n f: 1, there are four singular points of Eq.(2.6) in the half plane C>O: two 
saddle points at the origin of coordinates and at an infinitely remote point and two foci at 

the points C, = &Q*, Q* -;i --~‘~a& (‘ika’ t l,‘(rz--i))‘/s Two integral curves emerge from the saddle 

points and pass into their own foci: one curve (A,) emerges from 0 = (0,O) and passes to 

F+ = (Q,? Q,) while the other curve (LA emerges from P(-cz, 00) and passes to F_= (Q-9 - 
Q_) (Fig.1). The remaining integral curves join the foci while filling the whole of the half 

plane. 

By virtue of (2.51, the variable s = Ini increases 

along L_ upon moving from point P up to point B of the 
intersection of L_ with the straight line C = -Q while 
it decreases along L, upon moving from point 0 up to point 

A of the intersection of L, with the straight line C = Q. 
In general, s changes the direction of increase on moving 
along any integral curve, if it intersects the curve C = IQ I. 
This means that the solutions of system (2.2) are not con- 
tinuously extende; beyond the curve C=l Q1. 

The curve which passes into the saddle point 0, 
has the asymptotic+behaviour Q = as'(n + 2)-1'c' +0(P) as 

c-s-0. The solution of system (2.4) is constructed using 
ff the principal part of this asymptotic form 

Fig.1 
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Consequently, the vacuum state corresponds to the singular point 0. 
The curve L_, which emerges from the saddle point P, has the asymptotic behaviour Q = 

--a (1 f (n f 2)-1c-2) f O(C-“) as c-t co. It follows from (2.4) that q-to -0, ci-c,, &:&+ 

0 -0 as !+O+O. Consequently, retardation corresponds to the singular point P. 
The curves passing into the foci, F* have the asymptotic behaviour 

sin 8 &W-b) I 
Q = i Q+ f e+5(e-8J sin 8; 6 = a (n -1)/d, 
d = f32 - az(n - 3)2]‘/~. 

as O-tfco. 

It follows from (2.4) that ln(r&?)= N_QF~~ sin@ -0,) with certain constants 
e 

r*tp, IV,, 
f. This means that T+r+>O, ~-r~tm(Q++a)l~+~r~_Qrt as 0-+ =t 05. 

The solution q (F), Z(F) of system (2.4) close to the foci, F+,ismultiple valued. The 
single-valued branches are constructed using the parts of the curves L, up to their inter- 
sections with the curve C = 19 I, that is, in fact, using the curves OA and PB. The boundaries 

'zt of the domain, where the single-valued branches of the functions p (I;) and c (r) are 
specified, are determined by integrating the first equation of (2.5) along the curves OA and 
PB. Bence, a continuous flow from a point source at r=r into a vacuum F = r0 corresponds 
to the curve OA while a continuous flow within a sphere (i= 3) or a cylinder (IL = 2) with 
focussing at the centre of the sphere or on the axis of the cylinder corresponds to the curve 

PB. 

Theorem 5. When n>l, a flow exists from a point source with arbitrary parameters 

into a vacuum and this is perhaps through a shock wave and there exists a flow within a sphere 

(cylinder) with arbitrary input parameters with focussing at the centre (on the axis) and this 

may be through a shock wave. 

Proof. If the input parameters are such that, in the variables Q and C, the data point 

lies on the curve OA(PB), a continuous flow results. Suppose this is not satisfied. The 

velocity of the shock wave is equal to ii. The equations of the shock transitions (1.7) in 

the variables Q and C have the form 

(n + I) u = u',, (n + 1) U = PIi; U = Q -L CL - (+I) (4.3) 

u, = Qo + a - (&I), IV 7 nC’ CT-’ + CT, II’” = nC,~f!Jo-~+ 

If the source parameters M = (P, Q) 1’ le on an integral curve L of Eq.(2.6), which does 

not emerge fromthe saddle points, then the curve w= F(U) is defined using it. Then, (4.3) 

defines the shock transition curve (n + l)C,=F(W,i(n T 1)). The points of intersection 

.I[, = (P,, Q,), ~11, = (PI, QI) of the shock transition curve with the curves OA (PB) and L 

define a flow with a shock wave. In order to find the place where the shock wave is located 

and the vacuum point (the focussing parameter), it is necessary to integrate one of the EqS. 

(2.5) along a curve L from M to Mrand along the curve L+ from 0 to M, (L_ from P to MO). 

Remarks. lo. The flows, which are investigated in paragraphs 3 and 4, occur in a bounded 

volume at a fixed t, unlike the conventional stationary solutions /3/ which spread out to 

infinity where a vacuum is attained. A constant stationary flow is only possible in the one- 

dimensional case (n= i). 
2O. The solution of system (2.2) has a physical meaning for any natural R. A centro- 

symmetric solution in an n-dimensional space is considered in a three-dimensional subspace, 

Fi = 0, if i, 2, 3. By virtue of the symmetry, iii = 0 and it follows from (1.2) that U~=O and a 

solution of system (1.1) is obtained in the three-dimensional case with y = (m + 2)/n, where n 

is any natural number. 

5. Functionally-invariant solutions. The solutions (2.1) of system (1.3) when 
a=~=yzO and V = W = 0 are functionally invariant, that is, they depend on arbitrary 

functions. Actually, system (1.3) takes the form 
p; _ R (V'S_1 -F), pi = -_R (5.1) 

If the entropy is constant, that is, s = S,, P = A (S,) R(“+2)/“, A > 0, 
- p + cp (h), Vz = h (cp’ + i), where fi = (n + 2)AR(*+*)In, p = f', h = S2 and 

the&V; = 0, f? = 
is an 

arbitrary function but such that (P>o, V" > --1 in the flow domain. The boundary with a 

vacuum is specified by the equation p = 'p (h). 
If the entropy is not constant, then R = -2P,, Y' = h (1 --_,,-‘Pr) where P(h, IL) is an 

arbitrary function but such that P,< P,<O in the flow domain. The equation P, = 0 defines 
the boundary with a vacuum. 
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The surface of a contact discontinuity is defined from the equality [PI = 0. The remaining 

conditions (1.6) are satisfied by virtue of the equality u, = 0. Hence, any two solutions of 

(5.1) with intersecting flow domains are coupled along a surface of the same pressure through 

a contact discontinuity. 
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EFFECT OF SPHERICALLY SYMMETRIC MASS FLOW FROM THE SURFACE OF A 
PARTICLE ON THE FORCE OF INTERACTION WITH A PLANE SURFACE* 

A.M. GOLOVIN and A.F. RCGOVOI 

A stationary velocity field of the flow of a gaseous medium generated by 

uniform radial injection from the surface of a spherical particle near a 

wall is considered in the Stokes' approximation. Bispherical coordinates 
are used to write the expression for the stream function. A formula is 
obtained for the force acting on the spherical particle when there is 

an arbitrary mass flow from its surface, generalizing earlier results /l, 

2/. An expression for the force acting on the particle is obtained for 
the case of spherically symmetric injection from the surface of the 

particle, and asymptotic formulas at short and long distances from the 

wall are studied. 

An analogous problem concerning the forces of interaction between two 
spherical particles of the same radius, when uniform injection of equal 
intensity takes place from their surfaces, is discussed. This is equival- 
ent to the problem of the interaction of a spherical particle with a free 
surface. A general expression for the force of interaction, and its 
asymptotic forms for short and long distances, are obtained. 

1. Formulation of the problem. Evaporation from a spherical particle near a solid 
or free surface, caused by various processes taking place in the gaseous medium, at the surface 
and inside of the particle, can be regarded in certain cases as being close tu spherically 
symmetric. 

Let us consider, for example, a particle with internal heat emission, situated near a 
wall at a uniform temperature Tw, equal to the temperature of the gaseous medium far from 
the particle. We shall assume that the heat flux from the surface of the particleisgoverned 
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