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THE NON-STATIONARY INVARIANT SOLUTION OF THE EQUATIONS OF GAS DYNAMICS
DESCRIBING THE SPREADING OF A GAS INTO A VACUUM"

5.V, KHABIROV

An invariant solution of the equations of gas dynamics, constructed on a
one-dimensional subgroup (according to the classification in /1/) which
is only allowed in the case of a polytropic gas with a special adiabatic
index, 1is considered. The gas spreads out into a vacuum after a finite
time. New sclutions are constructed which describe one~dimensional flows
from a source into a vacuum and the focussing of the gas within a sphere
or a c¢ylinder with shock waves. The spreading of a concentration of the
gas with an arbitrary boundary when there is a contact discontinuity is
also considered.

One-dimensional flows have been treated in detail in /2, 3/, mainly
in the case of extended subgroups.

1. Equations for the invariant solution. The equations of gas dynamics in the
case of a polytropic gas with an equation of state

p=A(S)p¥, 4(S) = exp [{(§ — §,)/*/ynR]

and a special adiabatic index ¥ = (n - 2)/n  in a space Ty %, ..., T, have the form

du 1 do , dp .

T TVp:O. _d/'+pdwu:“’ - + ypdiva=0 (1.1
where u = (U, ..., u,) 1is the velocity, ¢ is the density, p is the pressure, S is the entropy

and R is the gas constant. Instead of the last equation, one may take d§/dt = 0.

System {(l.l) permits a (Y,;m(rn 4+ 3) -+ 5)-parameter group of point transformations (/4/,
p.146). 1In doing this, there is a special operator which is only permited in the case of an
index y = (n - 2)/n. When & = 2, all the dissimilar subgroups are tabulated in /1/. Next,
invariant solutions are considered which are constructed on a family of one-dimensional sub-
groups of this classification containing a special operator but for any natural n. A subgroup
is specified by the operator
9
0u‘.

J a
Ho=(1 +at + %) = + (t }o)r;—— + (r; — luy)
a3 a
nfp—d.-!-'- —{n +2)tp s
where the subgroup parameter ( {a<{2.

An invariant solution, constructed on a subgroup He, is written in the following form (¢
is the velocity of sound):

L fE _
o = 8 u+‘r —. p::e”e")——";‘——p—z';;g‘ {1.2)
(14 at413) (1 4 at 4 %)
- bt 3
e pH2)(E s S 2 . o280 <
p =ity (1 -+ at — 13y 2417 S=8, cd=e 14 a2
Fo= A (S)pimeatin, o2 = nt2 L g n+2 .;f_
n 6 n o
_ , 2t + o
e T (1 Lt - 12, () = i arct
re o )
( T i ) () ‘f/i——a“ g Vé—a’
The functions P, p, €, S and 1 = (@, ..., %y} depend on T = (Zy, ..., L)
Let u,p, J and & Dbe finite at any instant of time. Then, as t > 0o, the gas par-

ameters u,p,p and ¢ approach values corresponding to the vacuum state and to retardation at
all points of the space, When =0, we get
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rp=re %, u(0, )= el (re-%)
p(0,r)=e"8p (re %), p (0, r)=e0% i (re-%)

B =~ ATCYY —n

Vé—o? Vié—a?

This means that the values of U,p and j are practically the initial parameters of
the special gas.

suybstitution of (1.2) into (1.1l) yields the system of the Hy-invariant solution which
is similar to the system for the steady state motion of the gas in a centrosymmetric gravi-
tational field which is proportional to the radius

(i — o) Vi 4 pVj + F==0 (1.3)
(W — aF)-Vp -+ pdivi—=0
(B—~af)-Vo+{(n+2)n)pdivi=0 or (—af)-VS=0

The line L with the tangential direction @ — «f at each point is called a stream line.
The entropy integral § = §,(L) is valid along it.

When a =0 or in the case of flows when p = —7F%&.Vj, 7= |T |, the Bernoulli integral

P4nt P =Dr(L), §= 18] (1.4)
is wvalid.

In this case the flow takes place in a sphere 7<{ D, on the boundary of which a vacuum
and retardation are attained. In the case of a fixed F, the critical velocity is defined by
Ty® = (D? — %) /(n 4 1).

The Bernoulli integral is valid in the case when § = af cos f}, where B is the angle
between the vectors © and ¥ and, also, in the case of potential flows.

It has been verified that, if the flow in isentropic, it is also iso-energetic, that is,
the constant in the Bernoulli integral is independent of the stream line.

The characteristics of system (1.3) are sought in the form h(f)=0. If n is a unit
normal, then one characteristic coincides with the streamline (i —or):n = 0 while the other
two have the form (U — aF)'n= ¢ and, when « =0, they are only possible when i>¢

let the surface of a strong discontinuity F(r,?) =0 be Hg -invariant. Then, it has
the form F(f) = 0. The velocity of the surface in the direction of the normal m is:

— il (t+o)e® 5
Dy=— 57 =Dn (t+at + 2y’ D,=fn (1.5)

A contact discontinuity is characterized by the equalities u,= D,, Ipl =0, g, =0
(the square brackets denote a jump in the quantities inside the brackets). These equalities
are written in the Hy -invariants
dp =aD,, 151=0, lg,) =0 (1.6)
The conditions on the shock wave (SW) are specified by the equalities

fugl =0, lppl =6, [p+pvti=0, [(n+ 2ipip +v*i =0,

v=1u, —D,

where wug; 1s the projection of the vector u on to the tangent plane to the surface of the
explosion.
The relationships
= 1 - I
”2“n+1("1+n"“i, )' (1.7

1 . s - 72 _ —
o =g (e AR —5) I=T—D,

where the indices 1 and 2 denote the states of the gas along the different sides of the shock
wave, follow from these conditions which have been written in terms of H,-invariants.

2. The group property of the invariant motion. system (1.3) permitsa M,z (n — 1)]-
dimensional group of rotations, Z: and two extension operators

6 . @ _a _ -
X=zt§g+ut*ﬁ~+ngp—v Y=p——+p

10N
3=

The operator Y forms the centre of the whole algebra and it may therefore be added with
an arbitrary coefficient to any operator of any subalgebra. Taking account of the remark
which has just been made, we shall write the system of dissimilar subgroups when n> 1 in the
form /1, 5/
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Z +BXD>, <XD; (X, ZD; {4y Zy, Zyd; {Zy, 2o, 24, XD

The invariant solutions can be considered on each of these subgroups. For example,
calculation of the invariants of the subgroup Z + BX + yY when n =3 1leads to the follow-
ing form for the invariant solution:

uy; = eb®(U cos ¢ — Vsin ¢}, u, = efe (U sin ¢ + V cos ¢) (2.1
us; = ef®W, p = e¥eR, p = etv:260pP ’

where U, V,W,R and P depend on § = seB¢, z = x,efe; Zy = 5C€0S @, 2, = s sin ¢. Substitution into
(1.3) leads to the system for determining U, V, W, R and P.
System (1.3) has a symmetric sclution of the form
U=F1G(F)E, pF), BF), C={n-+2)/n)pfp

with respect to the origin of the coordinate system which is a particular invariant solution
constructed on a subgroup of rotations and enters into the class of one-dimensional motions
of a gas with spherical (n = 3), cylindrical (n = 2) and planar {(n = 1) waves. The functions
g and ¢ satisfy the system
g (] —a") +neg’ +7=0 (2.2)
ne' (G —a’) + (@ + (n — 1) g/r) =0
When o = 0, there are two integrals which completely describe the motion
g2 - né® 2= D32, qE"Fn—i —F (23)
when a # 0, system (2.2) can be written in the parametric form
dg/dl =(n — 1) g2 — 12 (7 — o) {2.4)

déjdl=n"g[F* — (n — 1)§ (7 — oF)]
drjdl =r[(§ — ai}* —

The substitution § =7 {Q(s) +a), ¢ =7C(s), s=1InF leads to the selfcontained system
of the two equations
dQ =0+ (@ +a)(nC*— 0%
a5 T Qr—Ct ’ (2.5)
nC i@ —0H0 @+
ds [P

By dividing the second of these two equations by the first, we get

14n(C2=Q) —(n-1)QQ +a) 2.6
0T Fay i — %) e

dc
a0

1
n

The solutions of system (2.2) are studied in detail later and it is explained to which
problems they correspond in gas dynamics.

~

3. One-dimensional motions when « =0. when n =1, it follows from (2.3) that
g=FEc, h=2¢"
FO)=A+EA1=D*—7*=GF) >0 (3.4

Plots of the functions F(A) and G (/) qualitatively describe the motion of the gas.
Let the maximum of G (F) be greater than the minimum of F(A), that is, D*>2|E|. Then,
the minimum of G (7) defines the domain of the flow 0 <r < r= (D? — 2 | E |)>. At the minimum
point, A= | E | satisfies the equality |[¢|=¢ = | K |'/» while the velocity of sound is
attained on the boundary of the flow domain F=ry. The function F(X) is defined on the
set Ay < h <Xy, where Ay, = 1,[D® =+ (D' — 4E*:]. The subsonic velocities |[gI<<|E <t
correspond to the values of A in the interval |E |<CA <A, while the supersonic velocities
1g1>E M >¢ correspond to the values of XA in the interval M<<A<|E]|. Hence, two
flows correspond to the two branches of the function A(F): one is subsonic and the other is
supersonic. Moreover, there is a source (7 >0, £ > 0) orasink (§ << 0,E << 0),. at the point 7 = (
and a further acoustic sink or source at the point F =r,.

The sclution when FE =0 is referred to as retardation.

Go = 0, ¢ = Dy* —#* 3-2)

It is defined in the domain 0 <7 < D,. A vacuum state is attained when F = D,.

Theorem 1. The sclution of (3.1) with the condition

D*>4|E|>0 (3.3)
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is coupled with the solution of (3.2) through a shock wave with a specified direction for its
velocity, if the inegualities ¥ 2,_,0211/1,0, /2 are satisfied. Generally, speaking, two
possible shock transitions exist.
Proof. The velocity of the shock wave is equal to =*F. On a shock transition, con-
ditions (1.7) take the form
- - Dgy? - Dy?
=+(f—35), @=D¢(1—%)
AY “ 7 AY e /
The place where the shock wave is located, F=r, =D ]/5 is found from (3.1). This

means that

i O

The equality ¢q¢ = E is equivalent to the equation
Fe)=mu2 —x)(1 —%)? =28, x = Dz2D?, 6 =4E*D™ (3.4)

the roots of which have to be sought in the interval 0 <{x <C2. The function f({x) has a
minimum equal to zero at the polnt #» =1 and two maxima equal to 3/, at the po;.nts ":t =14
o e

A1/‘) [ T N ity (3.3) £

- nsures +hat+ +hpo T L wav
1y 2 1Ne J.llc\.iuGA.J.L.y (J3edy I Tne K

ULCD “lig .
the flow domain Ty << 7.
When g > 0,'if the velocity of the shock wave is equal to F
Zemple’ﬂ’s theorem, retardation occurs in front of (or behind) the shock wave
point source is coupled with a vacuum.
wWhen ¢ << 0, retardation occurs behind (in front of) the shock wave front and the gas is
focussed within the domain r <{ry.
There are two roots of Eq.{3.4) subject to condition (3.3) in each of the intervals
1 <x<<20<<x<1, which correspond to the two possible shock transitions for a specified
direction of the velocity of the shock wave. When %<1, a unique solution is chosen with
the aid of the inequality r, << D,. The root of Eg.(3.4) then lies in the interval x <l, <
® << 1.
when n=2, it follows from (2.3) that
g=FEr 152, h=_2%"% (3.5)
F Q) =2\+ EN2 = (D2 —7%) = G(F)

Let the minimum of the function F (A) be less than the maximum of G (f), that is,

| E | < (1.D) 43.6)
1 I T~ A 7’ A7
The flow domain is then defined using the minimum of the function F (A): r, <7 <Cr,, where
ri , are the roots of the equation 3®E? = 7% (D? —7??% The velocity of socund [ =2, =
Lo T A et £ T T L S T T S S S S S S 2 e e, - A PR
[ﬂl" ri 15 4Qattaliiead ol Lie bounaaries OL Uals aomadlll. \,UIIquUEIlLLy, r = 7y ue[i.ue:. e
boundaries of the non-point acoustic sources or sinks. The maximum of the function G (r)
specifies the domain of definition of the function F (A): A <A<}, where X; >0 are the
roots of the equation 3 (¥,D)" = 2A + E?A"®%. In the domain A, <<A < E%:, the flow is subsonic

while it is supersonic in the domain Eh» <k <TA,.
The solution when E =0 1is referred to as a retardation.

go = 0, &* ="y (D — ) (3.7)
It is defined in the interval 0 L r g D, and reaches the vacuum when 7 = D,.
The following theorem is proved in precisely the same manner as when n=1.

Theorem 2. The solution of (3.5) subject to condition (3.6) is coupled with the solution
of (3.7) fhrour)fh the chock wave with a specified direction for its veloci ty, if the inegual-

specirie ve_oC1ltly the inegual

ities 3D/V5> Dy, > ]/3/7 are satisfied. At the same time, if V3D <Do << D, then there
exists a unique shock transition point while, if D <D, << SD/VS, two shock transitions are
cihle

no
pcssible.

The solutions contructed in Theorem 2 describe the flow of a gas from a non-point source
into a vacuum or the focussing of the gas on the axis of a cylinder.

when » = i+ follows from (2.2Y that
wnen n = o, 1t I[OliOWS from (<.5) that

§=Ei%S, A= (3.8)
FM =3 +EMN3=7FD—)=GCFH>0
The function y = F(A) has the asymptotes A= 0,y=23h and a minimum equal to 4| E |~

at the point A= | E |4, When 0<r< D, the function y = G (/) has a single maximum, equal
+ 97113/, ad+ Flha el e s — nhv/a T oo el il D {1\ FYRUE I PUUIEPIY S

e [T PSR a. wne hlUJ.lll— § - I' ue Let Lllc ML I1LI0Ulil U]_ i \’\t’ De 1es5s Tlidll une "]dxlmum UI
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The flow domain is defined using the minimum of the function F (A): r, <<F <Cr,, where r;
are the roots of the equation 4 [ E [+ =F (D® —7r?). The velocity of sound |g; | =7¢; = | E |Yri"
is attained on the boundaries of this domain. This means that » = r; are the boundaries of
the non-point acoustic sources and sinks.

Corresponding to the two branches of the function A (F), two values of A correspond
to each 7 from the flow domain. The two branches are defined on the set AVE P 8
2x 374D* and M <A< |E[» is the domain of values for the first branch while |£ [ -~
sy is the domain of values for the second branch, where A; >0 are the roots of the
equation E*A7? 4 3 = 2x 3-:D3, If A>|E |~ then #<C|E |/ '<<¢® and a subsonic flow
is obtained. If A<C|E |¥,, then g2 > | E |% 7' > and a supersonic flow results. An
extremal velocity is attained at the point 7 = D/V 3.

The solution when E =0 1is referred to as retardation.

T0 =0, 80 = ¥y (D — 1)

k-

s
[
-
=]

N

It is defined in the interval O0< 7 =] D, and, when 7 == D,, reaches the vacuum.

Theorem 3. The solution of (3.8) subject to the condition —3"s < e <C 1,3 1is coupled
with the solution of (3.10) through a shock wave with a specified direction for its velocity,
if the inequalities ]/ D <Dy << "] ,,,D are satisfied. Generally speaking, two shock
transitions are possible.

Proof. The velocity of the shock wave is equal to --f. It follows from conditions (1.7)
on the shock transition that
N 1 - - 25-2
g= = (r— - DY), =g D (16— D) (3.11)
Substitution of these equalities into (3.8) yields
Dy DY =21 — =), %= 2(F/D)? (3.12)
AAAAAAAAAA e F= DY hacmeman the ocreiad i e Aot it e bl rmeoi bt e — D M2
Lllt: DC&.UAIL‘ c\ﬁua;; vy L e MTLULEDS LT Syualliull 1o dolornimllla L\j Lile pusi Ll n* - \'* U’

~ s
o] {
where the shock wave is locate
Flo) = Rx — DI — %)(5% ~ D)% = ke, b = 127 (3.13)
By virtue of (3.9), |k | <<k, =2x3"": and, by virtue of (3.11) and (3.12), the function
f(x), defined in the interval !, <Ix <C1, has a negative minimum and a positive maximum at
the points

s = 1 | ]/“’3 ()= 0.29, () —=— 0.1

and three zeros at the points /4, !/, and 1. The two functions, f(x), which are tangential to

the graph at the points x, = Y, <Ix_, %, = (3 + }/19)/10, pass through the origin of coordinates
and have the angular coefficients f (x,) = -8x3% > ke [ (') = 0.42 > k,. This means that a
shock transition is only possible for values of k which satisfy the inequalities ~8x 373 <

ve been pregented in the formulaticon of

Lo« 9 v 2-%, The inegualities involvina whic
* Ve Degn presented in Tne rormu.iation oL

vl KXo, ne inequalslitlies 1nvo.aving ¢, wnicn n

this theorem, follow from this. For such k, Eg. (3.13) has two roots to which the two possible
shock transitions correspond.

Th ahele e e locared in +he Aoamain of tha £1aw = D T+ fallows From thisg
he shock wave must be located in the domain of the flow r, <Dy, It follows from this
that x, <<x, <*/; and a single shock transition is possible if Q<Ck <<3%,f (#/)<<ky and, at
the same time, 1/2 <, <a<*%; where 3/,af(*;)=f/(a). The shock wave must be located in
o I P S I T - - hare w. oo D DV catisfies the
tne aomalrnn O TIe TLIOW (£.5) 1 1] =Ty =T O K, < ¥y < Iy, wiere Ky = & \Fjsr) Satlisries wne
equation

Lk | % = (3A16)x2(2 — %) = g (x)
This means that the inequality g(x)>|f(#)!| must be satisfied, which is confirmed by

the calculations.
According to Zemplen's theorem, when %y <Yy (e > Ys), the state (2.3) is found ahead

of (behind) the shock wave front. If the velocity of the shock wave is equal to Tys Ry >
1y (—Tys ®e <<%), then § >0 (§ <<0) and the gas source with the boundary 7 =1 is coupled
through the shock wave at T =r, with a vacuum at 7 = r,. If the velocity of the shock
wave is equal to — Iy, %g > Y, (Fy, %4 << ), then §<C 0 (7>>0) and the gas is focussed within

the sphere r = r,.

4, One-dimensional motions when es<0. Let us investigate the behaviour of the
integral curves of Eq.(2.6) in the half-plane C >0 /6/.

There are two singular points when n = 1: one at the origin of the coordinate system
(a saddle point) and the other at an infinitely remote point. The curve which enters the
saddle point has the asymptotic behaviour @ = 1/,2C% 4 O (C%) when C — 0. The other end of
this curve enters into the infinitely remote singular point. Hence, the curve joining the
singularities separates the remaining integral curves which begin and terminate at an infinitely
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remote point.
System (2.4) is integrated when n = 1. After making the substitutions v =§ —«F +¢, and
w=¢g —ar —¢, the variables v and w are separated:

v? 4 awr 4+ 2=V 2% exp [—;—arutg( f;r -+ %” 4.1

y X
w? 4 awr 4 7 =W?exp [-—gw'arctg <—§— -+ %)] i A==l — —GZ-

The logarithmic spirals

—nTd e — W o9
o=V exp SR wo=—W exp T

are obtained in the polar coordinates
AF == @ cos @, U+ Yuf = osing, w+ YVyuf = wsing
The solution of system (2.4), adjoining a vacuum when r =ry, § = ary and ¢ = 0, corre-
gponds to a curve in the (Q,() plane which passes into the origin of the coordinate system.
At the same time v = w =0 and it follows from (4.1) that

V=W =reh p=— et 5

wWhen # = 0, this solution has the form

. amn . on
q-:_—roef‘shﬁ-:::qo, ¢ ==y == ryef ch~4—A— 4.2)

which corresponds to a point source.

Hence, a continuous flow from a point source into a vacuum corresponds to a curve joining
the singularities. The solutions of (2.4) which depend on two parameters correspond to other
integral curves of integral (2.6). They can be constructed with the help of the different
branches of the functions v and w from (4.1) and describe flows which originate from point
sources and are terminated by sinks.

Theorem 4. When n = 1, there exists a flow from a point source with arbitrary parameters
into a vacuum which may pass through a shock wave.

Proof. 1If the source parameters ¢, and ¢, are identical to {4.2), the flow is continuous.
In the general case of arbitrary parameters ¢, and ¢, solutions L (e, ¢,) of Eq, (4.1) are found
such that § == ¢, ¢ = ¢ when 7 =0. These curves are noct terminated by a vacuum state.

Let us now consider the sclutions L (ry, ¢y, gy) which are adjacent to a vacuum when 7 = r,.
By virtue of (4.2), they depend on the single parameter r,. Let us couple L (r, ¢y, go) with
L{e;, ;) when 7 =r, with the aid of the condition for a shock transition {(1.7). The egqual-
ities {1.7) become a system of two equations for determining the two unknowns 7y and r,.

When n sz {, there are four singular points of Eg.(2.6) in the half plane € >0: two
saddle points at the origin of coordinates and at an infinitely remote point and two foci at
the points €4 = 4Q4, Q4 = —Yya-+ (M/,2* + 1/(n--1))’2. Two integral curves emerge from the saddle

points and pass into their own foci: one curve (L,) emerges from O = (0,0) and passes to
F,=1{Q,, Q,) while the other curve (L) emerges from P (—a, o0} and passes toc F_=(Q_, —
Q.) (Fig.l). The remaining integral curves join the foci while filling the whole of the half
plane.
By virtue of {2.5), the variable s=1In# increases
along L_ upon moving from point P up to point B of the

P c intersection of L_ with the straight line € = — (@ while
it decreases along L, upon moving from point O up to point

M A of the intersection of L, with the straight line C =@.
In general, s changes the direction of increase on moving
along any integral curxve, if it intersects the curve € = | Q|.

This means that the solutions of system (2.2) are not con-
tinuously extended beyond the curve (==|Q|.

The curve L,, which passes into the saddle point O,
has the asymptotic behaviour Q = an®(n + 2)7C* + 0 (€Y as

C -0, The solution of system (2.4) is constructed using
the principal part of this asymptotic form
- fd3n+42 2n  F _
Fig.l = ( n+2  nt2 T)' r<ro
€—0, difdr—>—o0, T—r,
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Consequently, the vacuum state corresponds to the singular point O.

The curve L_, which emerges from the saddle point P, has the asymptotic behaviour @ =
—a{l+-m+2)70C*H+0(? as C—oco. It follows from (2.4) that §—0 —0, §—c, deidi —
0—-0 as 7F—0 4 0. Consequently, retardation corresponds to the singular point P.

The curves passing into the foci, Fi have the asymptotic behaviour

n—1

B 1 —3
C=0s + 3= [ 5 Qe doosd+ a0y 25% + ) %
sin 6] eF0E-0)

Q==£0Q. +eF0E0ginh, § = (n — 1)/d,
d = [32 — al(n — 3)2],

as 06— + .

It follows from (2.4) that ln (ry/f) = N4eF%sin (8 —0.) with certain constants ri., Ng,
84. This means that 7—>rie >0, §—> row Qe+ o) ¢ > + rieQsy as 06— £ oo,

The solution § (F), ¢ (F) of system (2.4) close to the foci, Fi, ismultiple valued. The
single-valued branches are constructed using the parts of the curves L, up to their inter-
sections with the curve € = |Q |, that is, in fact, using the curves OA& and PB. The boundaries
T+ of the domain, where the single-valued branches of the functions g (f) and ¢ (F) are
specified, are determined by integrating the first equation of (2.5) along the curves OA and
PB. Hence, a continuous flow from a point source at F =r, into a vacuum ! =TI, corresponds
to the curve OA while a continuous flow within a sphere (n =3) or a cylinder (n = 2) with
focussing at the centre of the sphere or on the axis of the cylinder corresponds to the curve
PB,

Theorem 5. When n>1, a flow exists from a point source with arbitrary parameters
into a vacuum and this is perhaps through a shock wave and there exists a flow within a sphere
(cylinder) with arbitrary input parameters with focussing at the centre (on the axis) and this
may be through a shock wave.

Proof. 1If the input parameters are such that, in the variables ¢ and ¢, the data point
lies on the curve OA (PB), a continuous flow results. Suppose this is not satisfied. The
velocity of the shock wave is egqual to =F. The equations of the shock transitions (1.7) in
the variables @ and C have the form

m+HU=W, (n+1HU=W, U=Q+a—~(+1 (4.3)
Uy = Qp + o — (1), W=nCU + U, W,=nCU,+
U,

I1f the source parameters M = (P, ) lie on an integral curve L of Eq.(2.6), which does
not emerge from the saddle points, then the curve W = F(U) 1is defined using it. Then, (4.3)
defines the shock transition curve 4+ DU,=F (W, /(n + 1)). The points of intersection
My = (Pg, Qp), My = (P1, Q1) of the shock transition curve with the curves 04 (PB) and L
define a flow with a shock wave. 1In order to find the place where the shock wave is located
and the vacuum point (the focussing parameter), it is necessary to integrate one of the Egs.
(2.5) along a curve L from M to M;and along the curve L, from 0 to M, (L. from P to M,).

Remarks. 1°. The flows, which are investigated in paragraphs 3 and 4, occur in a bounded
volume at a fixed t, unlike the conventional stationary solutions /3/ which spread out to
infinity where a vacuum is attained. A constant stationary flow is only possible in the one-
dimensional case (r=1).

29, fThe solution of system (2.2) has a physical meaning for any natural n. A centro-
symmetric solution in an n-dimensional space is considered in a three-dimensional subspace,
Fi=0,i¥1,2,3. By virtue of the symmetry, #;=0 and it follows from (1.2) that u; =06 and a
solution of system {(l.1) is obtained in the three-dimensional case with v = (rn -+ 2)/n, where n
is any natural number.

5. Functionally-invariant solutions. The solutions (2.1) of system (1.3) when
@ =Pp=9=0 and U= W=0 are functionally invariant, that is, they depend on arbitrary
functions. Actually, system (1.3) takes the form

P = R (V%1 —5), P;= —1iIR (5.1)

If the entropy is constant, that is, § = Sy, P = A (S) R/, 4 >0, then V. =0,R =
—u+o@), V2=A(p +1), where R = (n+ 2)ARmin p =72° A =3" and ¢ (M is an
arbitrary function but such that ¢ >0, ¢ > —1 in the flow domain. The boundary with a
vacuum is specified by the equation p = ¢ (A).

If the entropy is not constant, then R = —2P,, V*=A(1 —P,"'P;) where P (A, p) is an
arbitrary function but such that P, P“ << 0 in the flow domain. The equation Pu = 0 defines
the boundary with a vacuum.
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The surface of a contact discontinuity is defined from the equality [P] = 0. The remaining
conditions (l1.6) are satisfied by virtue of the equality u, =0. Hence, any two solutions of
(5.1) with intersecting flow domains are coupled along a surface of the same pressure through
a contact discontinuity.
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EFFECT OF SPHERICALLY SYMMETRIC MASS FLOW FROM THE SURFACE OF A
PARTICLE ON THE FORCE OF INTERACTION WITH A PLANE SURFACE"

A.M. GOLOVIN and A.F. ROGOVOI

A stationary velocity field of the flow of a gaseous medium generated by
uniform radial injection from the surface of a spherical particle near a
wall is considered in the Stokes' approximation. Bispherical coordinates
are used to write the expression for the stream function. A formula is
obtained for the force acting on the spherical particle when there is

an arbitrary mass flow from its surface, generalizing earlier results /1,
2/. An expression for the force acting on the particle is obtained for
the case of spherically symmetric injection from the surface of the
particle, and asymptotic formulas at short and long distances from the
wall are studied.

An analogous problem concerning the forces of interaction between two
spherical particles of the same radius, when uniform injection of equal
intensity takes place from their surfaces, is discussed. This is equival-
ent to the problem of the interaction of a spherical particle with a free
surface. A general expression for the force of interaction, and its
asymptotic forms for short and long distances, are obtained.

1. Formulation of the problem. Evaporation from a spherical particle near a solid
or free surface, caused by various processes taking place in the gaseous medium, at the surface
and inside of the particle, can be regarded in certain cases as being close to spherically
symmetric.

Let us consider, for example, a particle with internal heat emission, situated near a
wall at a uniform temperature T,, equal to the temperature of the gaseous medium far from
the particle. We shall assume that the heat flux from the surface of the particle is governed
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